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I. INTRODUCTION

The “reduced source” or “sequential Monte Carlo” iteration technique was first proposed by
Halton1;2 in 1962 for enhanced convergence of linear discrete systems. A single iteration of
this approach was applied to continuous photon transport problems in 1974 by Fraley.3 A decade
later, Booth4 outlined a few methods for implementing this iterative scheme to solve the contin-
uous radiation transport equation. In this paper, we summarize the reduced source acceleration
technique and apply it to a simple 1-D continuous transport problem.

The following is the time-independent neutron balance equation

~� � rN(~r;~v) + �t(~r;~v)N(~r;~v) =

Z
�s(~r; ~v0 ! ~v)N(~r; ~v0)d~v0 +Q(~r;~v); (1)

where

� ~�—unit vector in the direction of the velocity;

� ~v—velocity;

� N—transport flux;

� Q—source density;

� �t—total cross section;

� �s—scattering cross section.

Let
F (N) =

Z
�s(~r; ~v0 ! ~v)N(~r; ~v0)d~v0 � ~� � rN(~r;~v)� �t(~r;~v)N(~r;~v): (2)

Equation (1.1) can be written as

F (N(~r;~v)) +Q(~r;~v) = 0: (3)

We are going to solve Eq. 3 (or Eq. 1) by the sequential Monte Carlo method. Pick an estimate
of N(~r;~v), calledM(~r;~v), such that

N(~r;~v) = M(~r;~v) + �(~r;~v);
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where�(~r;~v) is the difference in our estimate from the true solution. Putting this into Eq. 3 gives

F (�) + S(~r;~v) = 0; (4)

where
S(~r;~v) = Q(~r;~v) + F (M): (5)

These equations can be solved in an iterative manner to obtainN . For theHth iteration this gives

F (�H) + SH(~r;~v) = 0; (6)

where
SH(~r;~v) = Q(~r;~v) + F (MH

) (7)

andM is improved with each iteration according to

MH+1
= MH

+ �H :

Then, asH !1, we should have
MH+1 ! N:

In the following sections, Eqs. 6 and 7 are applied to a one-dimensional problem, and convergence
rates are reported for various discretization and flux expansion approaches.

II. A PROBLEM OF ONE DIMENSION WITHOUT SCATTERING

We consider here only the one-dimensional case in which there is no scattering and the source
concentrates on x=0. Also, the energy is a constant and will be suppressed for simplicity.

In this simple case,MH only depends on x and the functionalF (MH
) has the form

F (MH
) = �[

d

dx
MH

(x) + �aM
H
(x)]: (8)

So, our problem can be formulated as
(

dMH

dx
+ �aM

H
= 0; 0 < x � T;

MH
(0) = Q0;

(9)

where,Q0 is the weight of the particle atx = 0. This very simple linear ODE Problem can be
solved accurately. We are going to solve this problem by various techniques and compare the
efficiency of all these techniques. As we will see, the crucial step is how to get an increment of
the source from the previous stage because this will heavily influence the accuracy of the solution.
Specifically, how do we evaluateF (MH

) from Eq. 8?

We will test two ideas: one is discretizing the solution in the interval, the other is expanding the
solution as a linear combination of the Legendre polynomials. We will see, by using the first idea,
that we can only obtain the values of the solution at some discrete points of the interval; whereas
by implementing the second idea, the solution can be expressed as a continuous function (actually,
a polynomial).
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III. DISCRETIZATION TECHNIQUES

In this section, we will test three different sampling methods to solve Eq. 9. All of these methods
belong to the discretization category because they all need the solution to be discretized first. But
the idea for solving the 0th stage is the same in all the three cases. We briefly describe it. The
problem is (

d�0

dx
+ �a�

0
= 0; 0 < x � T;

�0(0) = Q0;
(10)

First, discretize the interval[0; T ] (which can be considered as a line) intoK0 subintervals or zones
and denote the nodes byz0; z1; . . . ; zK0

as in Fig. 1.

z0 z1 zK0

Figure 1: line

Now, we samplew particles with each having the weightQ0. The initial points of the particles
are all atz0, and the length of track segments of the particles is decided by

ln = � log(�n)=�a

with �n � UNIF [0; 1], whereUNIF [0; 1] is the uniform distribution on[0; 1]. Then, the estimated
value of the solution atzk is

�0(zk) = Q0

H(l1 � zk) +H(l2 � zk) + � � �+H(lw � zk)

w
;

whereH(x) = 1 whenx � 0 and0 otherwise.

Now that we have the solution for the 0th stage, we will have the source for the first stage as we
stated in the introduction. Let us formulate the problem for the first stage. With an initial guess
M0

(x) = 0, then
M 1

(x) = M 0
(x) + �0(x) = �0(x)

and
M2

(x) = M 1
(x) + �1(x);

giving

�1(0) = M2
(0)� �0(0)

= Q0 �Q0

= 0:

Thus, the problem for the first stage can be written as(
d�1

dx
+ �a�

1
= S1(x); 0 < x � T;

�1(0) = 0:
(11)
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The exact form ofS1(x) will be described in the following three approaches.

A. Approach 1: Sampling the Position from the Source Function.

The best discretization results were obtained using this approach, as discussed in Section D.

First we divide[0; T ] into K subintervals (as shown in Fig. 1) withzk = xk(k = 0; 1; . . . ; K) as
the nodal points. The lengths of all the subintervals are equal to�x.

Now, according to Eqs. 7 and 8, we get the source of the first stage by (note our initial guess
M0

(x) = 0, thus M1
(x) = �0(x))

S1(x) = F (�0)

= �f
d�0

dx
+ �a�

0g:

Equation 11 gives a solution as follows

�1(x) =

Z x

0
e��a(x�y)S1(y)dy (12)

=

Z T

0
jS1(z)jdz

Z x

0
e��a(x�y)sign(S1(y))d(

R y
0 jS

1
(z)jdzR T

0 jS
1(z)jdz

)

=

Z T

0
jS1(z)jdz �

1

w

wX
n=1

e��a(x�tn)sign(S1(tn));

where
�n � UNIF [0; 1]

and tn is defined by

�n =

R tn
0 jS1(z)jdzR T
0 jS

1(z)jdz
:

Now, just as we did for the 0th stage, by sampling the track segment we take away the exponential
function. Let

�m � UNIF [0; 1];

and
rnm = tn � ln(�m)=�a:

Thus, for anyzj, if we sampleJ times the track segments, we obtain the Monte Carlo approximation
of the solution

�1(zj) =

R T
0 jS

1
(z)jdz

Jw

wX
n=1

JX
m=1

H(zj � tn)H(rnm � zj)sign(S
1
(tn));

whereH(x) = 1 for x � 0 and 0 otherwise. In our program, we chose J=1. From this expression,
we can easily see that the computation of

R T
0 jS

1
(z)jdz would most probably influence the accuracy.

So, we figured out the following way to evaluate this integral.
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Recall thatS1(x) is defined by

S1(x) = �f
d�0

dx
+ �a�

0g:

Then whenK is sufficiently large, we will have
Z T

0
jS1(z)jdz �

KX
k=1

j
Z xk

xk�1

S1(z)dzj

=

KX
k=1

j(�0(xk)� �0(xk�1)) + �a

Z xk

xk�1

�0(z)dzj:

Thus, we can avoid evaluating the quotient of two infinitesimal quantities which leads to significant
approximation. Furthermore, we reduce the error by using Simpson’s rule to evaluate the integrals
appearing in the sum.

We decidetn in a similar way. Assumexk�1 andxk are two neighboring points such that
k�1X
j=1

j
Z xj

xj�1

S1(z)dzj � �n

Z T

0
jS1(z)jdz <

kX
j=1

j
Z xj

xj�1

S1(z)dzj:

Then, we chosetn = xk�1 + �n�x with another�n � UNIF[0; 1].

Now, we have�1(x), so we can update the estimateM 2
= M1

+�1 and the source for the second
stage becomes

S2(x) = F (M2
);

whereF (M2
) can be treated in the same way as shown above forF (M1

). Thus we can go to the
second stage.

We can repeat this procedure as many times as we want and get the approximate solution of Eq. 9
by

N �MH+1
= �0(x) + �1(x) + � � �+ �H(x):

To measure the accuracy and the convergence rate, we have to calculate some data beside the
solution. We are mainly concerned with the estimated relative error, true relative error, and the
variance. Take a pointzk(we tookzk = T ). After Hth stages, the estimated and true relative error
can be written as

EstErr(zk) =
�H(zk)

N(zk)
; (13)

TrueErr(zk) =
N(zk)� Sol(zk)

Sol(zk)
; (14)

whereSol(zk) is the value of the true solution atzk.

For this approach, the variance of the estimation at x = T is

V ar(�H(T )) = [
1

Jw

wX
n=1

JX
m=1

(H(T � tn)H(rnm � T )sign(SH(tn))

Z T

0
jSH(z)jdz)2

� (�H(T ))2]=(Jw):
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B. Approach 2: Simple Difference.

x0

y1

x1

y2

x2 xK

Figure 2: Slab

To get the source from the previous stage, we assume all the source in each subinterval concentrates
on the middle point. So,S1(x) takes nontrivial values only at the pointsyk(k = 1; 2; . . . ; K). The
values can be obtained by central difference, that is

S1(yk) = �f
�0(xk)� �0(xk�1)

xk � xk�1
+ �a�

0
(yk)g: (15)

Since we are only interested in the values of�1(x) at some discrete points (x0; x1; . . . ; xk), we
have from Eq. 12

�1(xk) = e��axk
Z xk

0
e�ayS1(y)dy

= e��axk
kX
j=1

Z xj

xj�1

e�ayS1(y)dy

�
kX
j=1

Z xj

xj�1

e��a(xk�yj)S1(yj)dy

=

kX
j=1

[S1(yj)�x]e
��a(xk�yj)

=

kX
j=1

[S1(yj)�x]e
��a(k�j+0:5)�x:

Now, we constructk random variables�1; �2; . . . ; �k, the probability distributions of which are as
follows:

�1 : P (�1 = S1(y1)�x) = e��a(k�1+0:5)�x; P (�1 = 0) = 1� e��a(k�1+0:5)�x;

�2 : P (�2 = S1(y2)�x) = e��a(k�2+0:5)�x; P (�2 = 0) = 1� e��a(k�2+0:5)�x;
...

�k : P (�k = S1(yk)�x) = e��a(k�k+0:5)�x; P (�k = 0) = 1� e��a(k�k+0:5)�x:

Thus�1(xk) can be expressed in a sum of the means ofk independent random variables

�1(xk) = E[�1] + E[�2] + � � �+ E[�k]: (16)
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It is somewhat different from�1(yk) which can be written as

�1(yk) = e��ayk
Z yk

0
e�ayS1(y)dy

= e��ayk
k�1X
j=1

Z xj

xj�1

e�ayS1(y)dy + e��ayk
Z yk

xk�1

e�ayS1(y)dy

�
k�1X
j=1

Z xj

xj�1

e��a(yk�yj)S1(yj)dy + e��ayk+�a
yk+xk�1

2 S1(yk)
�x

2

=

k�1X
j=1

[S1(yj)�x]e
��a(k�j)�x + e��a

�x

4 � [S1(yk) �
�x

2
]:

We now construct our probabilistic model as follows. As for�1(xk), we first write down the
probability distributions:

�1 : P (�1 = S1(y1)�x) = e��a(k�1)�x; P (�1 = 0) = 1� e��a(k�1)�x;
...

�k�1 : P (�k�1 = S1(yk�1)�x) = e��a(k�(k�1))�x; P (�k�1 = 0) = 1� e��a(k�(k�1))�x;

�k : P (�k = e��a
�x

4 S1(yk)
�x
2
) = 1; P (�k = 0) = 0:

Thus, we can still get a probabilistic model for�1(yk)

�1(yk) = E[�1] + E[�2] + � � �+ E[�k]: (17)

For the first stage, it seems much more difficult than for the 0th stage, but it can be solved in
almost the same way. Now, we must keep in mind that we haveK particles which concentrate
on different positions,S1(y1)�x at y1, S1(y2)�x at y2, � � �, S1(yK)�x at yK . For each particle,
trackw (can be chosen arbitrarily, differently for different particles) times, then add the total for
each point, and we are done with the first stage.

We can use Eqs. 13 and 14 (for H=1) to obtain the estimated and true relative errors. The variance
is as follows.

For simplicity of the notations, we only write down the variance of each stage at the final point
xK = T . It is

V ar(�m(T )) =
KX
k=1

�2k
nk
; (18)

where
�2k = [Sm(yk)�x]

2e��a(K�k+0:5)�x
(1� e��a(K�k+0:5)�x

)

is the variance of sample of�k, andnk is the number of samples of�k.

In the above, we intentionally wrotenk to imply that we can choose a different number of samples
for each particle. Actually, if we keep the number of samples for each stage fixed but carefully
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choosenk for each subinterval, then we can reduce the variance significantly, especially for a big
K. We write down the result in the following but do not elaborate on it. Let

n = n1 + n2 + � � �+ nK ;

and

� =
1

n
[

KX
k=1

jSm(yk)�xje
�
�a
2
(K�k+0:5)�x

(1� e��a(K�k+0:5)�x
)
1

2 ]:

If we take

nk =
jSm(yk)�xj

�
e�

�a
2
(K�k+0:5)�x

(1� e��a(K�k+0:5)�x
)
1

2 ;

the variance of Eq. 18 will attain its minimum

V armin =
1

n
(

KX
k=1

�k)
2:

C. Approach 3: Sample Another Function.

Begin from Eq. 12 and use Fig. 1. We write down Eq. 12 in a different form

�1(x) = f(x)

Z x

0
S1(y)g(y)dy;

where

f(x) =

Z x

0
e��a(x�z)dz =

1

�a

(1� e��ax);

g(y) =
�ae

��a(x�y)

1� e��ax
:

To estimate�1(x) by the Monte Carlo method, we sample

�n � UNIF [0; 1]

and solve
�n =

Z yn

0
g(z)dz

for yn,
yn = log(1 + �n(e

�ax � 1))=�a:

Thus, if we samplew times, we get the estimation of�1(zk) by

�1(zk) =
f(zk)

w

wX
n=1

S1(yn)

=
1

w�a

(1� e��azk) �
wX
n=1

S1(yn):
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Recall thatS1(x) is a discrete function. We do not have the valueS1(yn) if yn is not equal to
any zk. To overcome this difficulty, we use linear interpolation. Ifzj�1 < yn � zj, we use the
approximation

S1(yn) �
S1(zj)(yn � zj�1) + S1(zj�1)(zj � yn)

zj � zj�1
:

Thus, we estimate�1(zk) by

�1(zk) =
1

w�a

(1� e��azk) �
wX
n=1

S1(zj)(yn � zj�1) + S1(zj�1)(zj � yn)

zj � zj�1
;

wherezj�1 < yn � zj. We still use Eqs. 13 and 14 to estimate both the estimated and the true
relative errors for each pointzk. But the formula for the variance is different. The variance for
the estimation atx = T is

V ar(�1(T )) = [
1

w

wX
n=1

(
1

�a

(1� e��aT )
S1(zj)(yn � zj�1) + S1(zj�1)(zj � yn)

zj � zj�1
)
2

� (�1(T ))2]=w:

D. Comparison of Convergence Rates.

Finally, let us compare the results obtained by these three different approaches. We only compare
the two important measures (estimated and true relative errors, see Eqs. 13 and 14) at the final point
x = T . We choseT = 5cm;Q0 = 1;�a = 1=cm. In Table 1, the number of subintervals (K) is 100,
and the number of particles per iteration or stage is 10,000. Data presented in the following tables
is included only to the point where the estimated error exceeds the true error. While exponential
convergence continues beyond this point, convergence is to the incorrect solution due to various
approximations discussed in each approach.

Table 1:

Stages Approach 1 Approach 2 Approach 3
Est. Error True Error Est. Error True Error Est. Error True Error

0 1.0e+00 -5.6e-03 1.0e+00 -2.2e-01 1.0e+00 -2.2e-01
1 4.9e-02 4.5e-02 -2.0e-01 -1.8e-02 -2.2e-01 6.2e-03
2 -4.4e-02 1.0e-03 -1.6e-02 -1.5e-03 6.2e-03 -4.5e-05
3 -1.0e-03 -2.2e-05
4 3.6e-05 1.3e-05
5 -3.5e-05 -2.2e-05

In Table 2, the number of subintervals is increased to 500, and the number of particles per iteration
is still 10,000.
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Table 2:

Stages Approach 1 Approach 2 Approach 3
Est. Error True Error Est. Error True Error Est. Error True Error

0 1.0e+00 -5.6e-03 1.0e+00 -2.2e-01 1.0e+00 -2.2e-01
1 1.0e-01 1.1e-01 -9.6e-02 -1.1e-01 -2.4e-01 2.2e-02
2 -1.2e-01 -7.0e-03 -8.0e-02 -2.8e-02 4.3e-02 -2.1e-02
3 1.9e-02 1.2e-02 -2.5e-02 -3.0e-03 -2.5e-02 4.0e-03
4 -1.2e-02 -1.2e-05 -3.4e-03 4.5e-04 1.5e-02 -1.1e-02
5 1.1e-04 9.6e-05 -1.7e-02 6.2e-03
6 7.4e-05 1.7e-04
7 -1.7e-04 -2.2e-06
8 2.9e-06 6.9e-07
9 -1.7e-06 -9.6e-07
10 7.3e-07 -2.3e-07

From Table 1, we see that carefully handling the source from the previous stages will make a big
difference for the final results. Besides, we can also get better results by increasing the number of
the subintervals.

IV. FLUX EXPANSION TECHNIQUES

As the title implies, we will expand the flux according to some set of functionsE = fe0(x); e1(x); e2(x); . . .g.
The only requirement onE is that it must be complete, roughly speaking. In other words, we
should have the equality

�(x) =
1X
j=0

ajej(x)

if �(x) is continuous and differentiable. Here we choseE = fLegendre polynomialsg. We will
give three different sampling methods, but they are same for the 0th stage as in the case of the
discretization technique.

Suppose

�0(x) =
1X
j=0

ajPj(f); (19)

where, as in Ref. 4,Pj(f)(j = 0; 1; 2; . . .) are Legendre polynomials andf =
2x
T
� 1 (a variable

transform) to ensure that whenx 2 [0; T ]; f 2 [�1; 1]. Then

aj =
2j + 1

2

Z 1

�1
�0(x)Pj(f)df

=
2j + 1

T

Z T

0
�0(x)Pj(

2x

T
� 1)dx; j = 0; 1; 2; � � � : (20)
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Now, we use the Monte Carlo method to estimateaj. From Eq. 10 which�0(x) satisfies, we
know that the source particles appear only atx = 0, and along each track segment of the particle,
�0(x) � Q0. Now, let us first write down the length of each track segment that is sampled by the
following method. Suppose

�n � UNIF [0; 1]; (21)

and let
Xn = � log(�n)=�a; (22)

Yn = minfT;Xng;

wheren = 1; 2; . . . ; w. Then we have the estimated value ofaj

aj =
2j + 1

T
Q0

1

w

wX
n=1

Z Yn

0
Pj(

2x

T
� 1)dx: (23)

Now, we list some useful formulae about Legendre polynomials without proof. Please refer to
Ref 5.

Pj(f) =
1

2j + 1
(P 0

j+1(f)� P 0

j�1(f));

P 0

j(f) = (2j � 1)Pj�1(f) + (2j � 5)Pj�3(f) + (2j � 9)Pj�5(f) + . . . ;

Pj(1) = 1; Pj(�1) = (�1)
j;

Z 1

�1
Pj(f)Pk(f)df =

(
0; j 6= k;
2

2j+1
; j = k:

where,j; k = 0; 1; 2; . . . ; and P�1(f) � 0. These formulae will be used to evaluate Eq. 23 and
some later integrals.

Before we switch to the first stage, we write down the sourceS1(x). According to Eq. 8,

F (�0) = �f
d�0

dx
+ �a�

0g;

and
S1(x) = F (�0):

Since�0 is continuously defined, thereforeF (�0) can be obtained in an accurate way. We must
note that, when we use Eq. 19 to express�0(x), we can only use a finite sum. Thus,�0(x) is
actually a polynomial. Now the problem for the first stage can be formulated as

(
d�1

dx
+ �a�

1
= S1(x); 0 < x � T;

�1(0) = Q0 � �0(0):
(24)

Note,�1(0) 6= 0 in general. To solve this problem, we split it into two problems first:

(
d�1

1

dx
+ �a�

1
1 = 0; 0 < x � T;

�11(0) = Q0 � �0(0):
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and second: (
d�1

2

dx
+ �a�

1
2 = S1(x); 0 < x � T;

�12(0) = 0:
(25)

The first problem can be solved for�11(x) in the same way as for the 0th stage. If we can
solve Eq. 25 for�12(x), then�1(x) = �11(x) + �12(x) is the solution of Eq. 24 by the principle of
superposition. To solve Eq. 25, we consider the following problem(

d 

dx
+ �a = 0; 0 < y < x � T;

 (x; y)jx=y = S1(y);
(26)

where y is considered as a parameter. The following lemma constructs a relation between the
solution of Eq. 25 and that of Eq. 26.

Lemma. If  =  (x; y) is the solution of Eq. 26, then

�12(x) =

Z x

0
 (x; y)dy

is the solution of Eq. 25.

Now, we expand�12(x) in terms ofPj(f)’s.

�12 =
1X
j=0

ajPj(f):

Then

aj =
2j + 1

T

Z T

0
�12(x)Pj(

2x

T
� 1)dx

=
2j + 1

T

Z T

0
[

Z x

0
 (x; y)dy]Pj(

2x

T
� 1)dx

=
2j + 1

T

Z T

0
[

Z T

y

 (x; y)Pj(
2x

T
� 1)dx]dy:

Therefore, we can consider (x; y) as the flux with the source particlesS1(y) only at x = y, and
along each track segment starting fromy,  (x; y) � S1(y). Thus, if we assume�n andXn are
defined by Eq. 21 and Eq. 22, and

Yn = minfT;Xn + yg; (27)

then we have the estimations ofaj ’s as follows

aj =
1

w

wX
n=1

[
2j + 1

T

Z T

0
S1(y)dy

Z Yn

y

Pj(
2x

T
� 1)dx]:

=
1

w

wX
n=1

Ijn; (28)

where

Ijn =
2j + 1

T

Z T

0
S1(y)dy

Z Yn

y

Pj(
2x

T
� 1)dx: (29)

Now, we have three different approaches to evaluate Eq. 29. We will describe them one by one.
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A. Approach 1: Discretizing the Integral about y.

Divide [0,T] into K subintervals

[x0; x1]; [x1; x2]; . . . ; [xK�1; xK ]:

Then we use the following formulae to estimateaj:

aj =
2j + 1

T

KX
k=1

Z xk

xk�1

S1(y)dy �
1

w

wX
n=1

[

Z Yn

yk

Pm(
2x

T
� 1)dx]; (30)

where
yk =

xk�1 + xk

2
:

Equation 30 is straightforward; nothing needs to be explained. We use the following formulae to
calculate the estimated and true relative errors.

EstErr(x) =
�1(x)

N(x)
; (31)

TruErr(x) =
N(x)� Sol(x)

Sol(x)
; (32)

whereSol(x) is the value of the true solution at x. The variances for estimating a coefficientaj
can be evaluated by

V ar(aj) = [
1

w

wX
n=1

(
2j + 1

T

KX
k=1

Z xk

xk�1

S1(y)dy

Z Yn

yk

Pm(
2x

T
� 1)dx)2 � (aj)

2
]=w:

Thus, the variance of estimating the value of the solution at T is

V ar(�1(T )) =
n0�1X
j=0

V ar(aj) + V ar(�11(T )): (33)

B. Approach 2: Sample the Initial Position fromS1(y).

First, we write downaj in a convenient form

aj =
1

w

wX
n=1

2j + 1

T

Z T

0
S1(y)dy

Z Yn

y

Pj(
2x

T
� 1)dx

=
1

w

wX
n=1

Z T

0
S1(y)Qj(y)dy;

where

Qj(y) =
2j + 1

T

Z Yn

y

Pj(
2x

T
� 1)dx:

Now, we describe how to estimate

Ij =

Z T

0
S1(y)Qj(y)dy:
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AssumeS1(y) 6= 0: Then

Ij = (

Z T

0
jS1(z)jdz)[

Z T

0
Qj(y)sign(S

1
(y))d(

R y
0 jS

1
(z)jdzR T

0 jS
1(z)jdz

)]:

Construct a density function as follows

g(y) =

8>>><
>>>:

0; y < 0;
jS1(y)jR T

0
jS1(z)jdz

; 0 � y � T;

0; y > T:

Assume
�m � UNIF [0; 1]:

Then for each�m, there exists a uniqueym, such that

�m =

Z ym

0
g(y)dy:

If we chooseJ samples, we can estimateIj by

Ij =

R T
0 jS

1
(z)jdz

J

JX
m=1

Qj(ym)sign(S
1
(ym)):

In our program, we choseJ = 1. The coefficientaj is estimated by

aj =

R T
0 jS

1
(z)jdz

wJ

JX
m=1

wX
n=1

2j + 1

T
sign(S1(ym))

Z Yn

ym

Pj(
2x

T
� 1)dx:

Equations 31 and 32 are still applicable here. The variances foraj are

V ar(aj) = (

Z T

0
jS1(z)jdz)2 � [

1

wJ

JX
m=1

wX
n=1

(
2j + 1

T
sign(S1(ym))

�
Z Yn

ym

Pj(
2x

T
� 1)dx)2 � (

1

wJ

JX
m=1

wX
n=1

2j + 1

T
sign(S1(ym))

�
Z Yn

ym

Pj(
2x

T
� 1)dx)2]=(Jw):

The variance for the solution at T is

V ar(�1(T )) =
n0�1X
j=0

V ar(aj) + V ar(�11(T )):

C. Approach 3: Evaluate Eq. 29 Accurately.

This can be done by using those formulae listed after Eq. 23. However, this may not be a good
idea because we have to do many integrations by parts, especially when many polynomials are
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involved. To make it easy to implement by the programming code, we do some calculations on
Eq. 29. Rememberf =

2x
T
� 1. We have

Ijn =
2j + 1

2

Z T

0
S1(y)dy

Z 2Yn
T

�1

2y

T
�1

Pj(f)df

=
1

2

Z T

0
S1(y)dy

Z 2Yn
T

�1

2y

T
�1

(P 0

j+1(f)� P 0

j�1(f))df

=
1

2

Z T

0
S1(y)(Pj+1(

2Yn

T
� 1)� Pj�1(

2Yn

T
� 1))dy

�
1

2

Z T

0
S1(y)(Pj+1(

2y

T
� 1)� Pj�1(

2y

T
� 1))dy

� I1 � I2:

I2 can be evaluated easily. To evaluateI1, we need to consider two cases:

(a)Xn � T: ThenYn = T . So,

I1 =
1

2

Z T

0
S1(y)(Pj+1(1)� Pj�1(1))dy;

(b) Xn < T: We have

I1 =
1

2

Z T�Xn

0
S1(y)(Pj+1(

2(Xn + y)

T
� 1)� Pj�1(

2(Xn + y)

T
� 1))dy

+
1

2
(Pj+1(1)� Pj�1(1))

Z T

T�Xn

S1(y)dy:

The second integral is easily calculated, but the first will cost many hours of computer time.

The formulae in Eq. 31 and Eq. 32 can still be used to evaluate the estimated and the true relative
errors. But the variances for calculating the coefficientaj can be evaluated by

V ar(aj) = [
1

w

wX
n=1

(
2j + 1

T

Z T

0
S1(y)dy

Z Yn

y

Pj(
2x

T
� 1)dx)2 � (aj)

2
]=w:

Thus, the variance for estimating the solution atT can be written as follows

V ar(�1(T )) =
n0�1X
j=0

V ar(aj) + V ar(�11):

D. Comparison of Cnvergence Rates.

Finally, let us compare the numerical results obtained by these different sampling methods. It
is clear that the number of polynomials we use will be a crucial part of the final results. As in
the discrete case, we choseT = 5cm, �a = 1=cm, andQ0 = 1. Also, we chose the number
of the particles per iteration to be 10,000. Table 3 lists the results using the first ten Legendre
polynomials.



Distribution September 13, 1996-16-

Table 3:

Stages Approach 1 Approach 2 Approach 3
Est. Error True Error Est. Error True Error Est. Error True Error

0 1.0e+00 -1.7e-01 1.0e+00 -1.7e-01 1.0e+00 -1.7e-01
1 -1.6e-01 -5.0e-03 -1.8e-01 9.0e-03 -1.7e-01 -3.5e-04
2 -1.8e-04 -4.8e-03 8.7e-03 3.2e-04 -5.1e-04 1.6e-04
3 -4.1e-03 -6.7e-04 1.5e-04 1.6e-04
4 -1.5e-03 8.6e-04
5 7.6e-04 1.0e-04

In Table 4, the number of Legendre coefficients is increased to 20. This table lists results only
for Approaches 1 and 2, since Approach 3 required too much CPU time for 10,000 particles per
iteration.

Table 4:

Stages Approach 1 Approach 2
Est. Error True Error Est. Error True Error

0 1.00e+00 -2.37e-01 1.00e+00 -2.37e-01
1 -2.72e-01 2.77e-02 -2.28e-01 -6.99e-03
2 3.03e-02 -2.66e-03 -5.91e-03 -1.07e-03
3 -1.17e-03 -1.50e-03 -1.30e-03 2.24e-04
4 -1.98e-03 4.80e-04 2.32e-04 -8.32e-06
5 5.41e-04 -6.13e-05 -8.67e-06 3.50e-07
6 -4.99e-05 -1.14e-05 4.41e-07 -9.10e-08
7 -1.02e-05 -1.22e-06 -9.54e-08 4.42e-09
8 -1.15e-06 -7.18e-08 4.87e-09 -4.47e-10
9 -6.72e-08 -4.61e-09 -4.74e-10 2.68e-11
10 -5.59e-09 9.80e-10 2.93e-11 -2.58e-12
11 1.52e-09 -5.39e-10 -2.81e-12 2.29e-13
12 -4.43e-10 -9.66e-11 2.33e-13 -3.86e-15
13 -9.28e-11 -3.86e-12 -9.35e-15 5.54e-15
14 -3.70e-12 -1.62e-13
15 1.49e-13 -3.11e-13
16 -2.93e-13 -1.79e-14
17 -2.46e-14 6.69e-15

From these two cases, it is easily seen that we can improve the results dramatically by increasing
the number of the Legendre polynomials used for expanding the flux. From the following simple
example, we know that the results are not very sensitive to the number of the particles.
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The following table lists an example for Approach 3 with 16 Legendre polynomials and only 100
particles per iteration. The other parameters are the same as discussed above.

Table 5:

Stages Approach 3
Est. Error True Error

0 1.00e+00 1.48e+00
1 1.32e+00 -4.87e-01
2 -4.86e-01 -4.66e-04
3 -1.54e-03 1.07e-03
4 1.15e-03 -8.08e-05
5 -1.18e-04 3.77e-05
6 3.75e-05 1.51e-07
7 4.57e-08 1.06e-07
8 1.07e-07 -9.72e-10
9 -1.55e-09 5.76e-10
10 4.69e-10 1.07e-10

V. SUMMARY AND FUTURE WORK

In this report, we have discussed two main techniques to address the one-dimensional transport
problem without scattering. We used some different sampling methods to construct some mathe-
matical models and related computer programs.

First for the discretization methods, we know it is crucial to get the source from the previous
stages. So, any effort to reduce the source error will definitely make sense for solving the problem
more accurately. Besides, sampling different distribution functions, or generally, using importance
sampling in our problem probably will improve the results very much.

Compared to the discretization methods, the flux expansion techniques look much more encourag-
ing. It improves the results significantly, and besides, it gives us a continuously defined function
which would provide more knowledge than the discretization methods do.

Our future work is to apply those methods, both discretization and flux expansion techniques, to
multidirectional-scattering and multidimensional problems. We are also interested in developing
some new methods in solving these problems.
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